PIN Diodes for RF Switching and Attenuating

Technical Data

Features

- Low Harmonic Distortion
- Large Dynamic Range
- Low Series Resistance
- Low Capacitance

Description/Applications

These general purpose switching diodes are intended for low power switching applications such as RF duplexers, antenna switching matrices, digital phase shifters, and time multiplex filters. The 5082-3188 is optimized for VHF/UHF bandswitching.

The RF resistance of a PIN diode is a function of the current flowing in the diode. These current controlled resistors are specified for use in control applications such as variable RF attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF limiters.

Outline 15 diodes are available on tape and reel. The tape and reel specification is patterned after RS-296-D.

1N5719, 1N5767, 5082-3001, 5082-3039, 5082-3077, 5082-3080/81, 5082-3188, 5082-3379

DIMENSIONS IN MILLIMETERS AND (INCHES).
Outline 15
Maximum RatingsJunction Operating andStorage Temperature Range$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Power Dissipation $25^{\circ} \mathrm{C}$250 mW
(Derate linearly to zero at $150^{\circ} \mathrm{C}$)
Peak Inverse Voltage (PIV)
same as $V_{B R}$
Maximum Soldering Temperature
$260^{\circ} \mathrm{C}$ for 5 sec

[^0]General Purpose Diodes
Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Part Number 5082 -	Maximum Total Capacitance C_{T} (pF)	Minimum Breakdown Voltage \mathbf{V}_{BR} (V)	Maximum Residual Series Resistance \mathbf{R}_{S} (Ω)	Effective Carrier Lifetime τ (ns)	Reverse Recovery Time t_{Ht} (ns)
General Purpose Switching and Attenuating					
3001	0.25	200	1.0	100 (min.)	100 (typ.)
3039	0.25	150	1.25	100 (min.)	100 (typ.)
1N5719	$0.3^{* *}$	150	1.25	100 (min.)	100 (typ.)
3077	0.3	200	1.5	100 (min.)	100 (typ)
Band Switching					
Test Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{R}}=50 \mathrm{~V} \\ { }^{*} \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} \\ { }^{* *} \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	$\overline{V_{R}}=V_{B R}$ Measure $\mathrm{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\ { }^{*} \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ * * \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ \mathrm{f}=100 \mathrm{MHz} . \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{R}}=250 \mathrm{~mA} \\ { }^{*} \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ { }^{*} \mathrm{I}_{\mathrm{R}}=6 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{R}}=10 \mathrm{~V} \end{gathered}$ 90\% Recovery

Notes:
Typical CW power switching capability for a shunt switch in a 50Ω system is 2.5 W .

RF Current Controlled Resistor Diodes
 Electrical Specifications at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Part Number	Effective Carrier Lifetime t (ns)	Min. Breakdown Voltage \mathbf{V}_{BR} (V)	Max. Residual Series Resistance $\mathbf{R}_{\mathbf{S}}(\Omega)$	Max. Total Capacitance C_{T} (pF)	High Resistance Limit, \mathbf{R}_{H} (W)		Low Resistance Limit, $\mathbf{R}_{\text {L }}$ (W)		Max. Difference in Resistance vs. Bias Slope, Dc
					Min.	Max.	Min.	Max.	
5082-3080	1300 (typ.)	100	2.5	0.4	1000			8**	
1N5767*	1300 (typ.)	100	2.5	0.4	1000			$8^{* *}$	
5082-3379	1300 (typ.)	50		0.4				$8^{* *}$	
5082-3081	2500 (typ.)	100	3.5	0.4	1500			$8^{* *}$	
Test Conditions	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{R}}=250 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{BR}},$ Measure $I_{R} \leq 10 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$	$\begin{gathered} V_{R}=50 \mathrm{~V} \\ \mathrm{C}=1 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & I_{F}=0 . \\ & f=10 \end{aligned}$	$\begin{aligned} & 01 \mathrm{~mA} \\ & \mathrm{MHz} \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}= \\ \mathrm{I}_{\mathrm{F}}= \\ \mathrm{f}=1 \end{gathered}$	$\begin{aligned} & 0 \mathrm{~mA} \\ & \mathrm{~mA}^{* *} \\ & \mathrm{MHz} \end{aligned}$	Batch Matched at $\mathrm{I}_{\mathrm{F}}=0.01 \mathrm{~mA}$ and 1.0 mA $\mathrm{f}=100 \mathrm{MHz}$

*The IN5767 has the additional specifications:
$\tau=1.0 \mathrm{msec}$ minimum
$\mathrm{I}_{\mathrm{R}}=1 \mu \mathrm{~A}$ maximum at $\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$
$V_{F}=1 \mathrm{~V}$ maximum at $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$.

[^0]: NJ Semi-Conductors reserves the right to change test conditions. parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both aceurate and reliable at the time of going to press. However N.J Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. N.I Semi-Conductors encourages customers to verify that datasheets are carrent before placing orders.

